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Abstract—Disentanglement learning is a core issue for understanding and re-using trained information in Variational AutoEncoder (VAE),
and effective inductive bias has been reported as a key factor. However, the actual implementation of such bias is still vague. In this paper,
we propose a novel method, called Multiple Invertible and partial-equivariant transformation (MIPE-transformation), to inject inductive bias
by 1) guaranteeing the invertibility of latent-to-latent vector transformation while preserving a certain portion of equivariance of
input-to-latent vector transformation, called Invertible and partial-equivariant transformation (IPE-transformation), 2) extending the form of
prior and posterior in VAE frameworks to an unrestricted form through a learnable conversion to an approximated exponential family,
called Exponential Family conversion (EF-conversion), and 3) integrating multiple units of IPE-transformation and EF-conversion, and
their training. In experiments on 3D Cars, 3D Shapes, and dSprites datasets, MIPE-transformation improves the disentanglement
performance of state-of-the-art VAEs.

Index Terms—Variational Auto-Encoder, Disentanglement Learning, Equivariant Function, Invertible Function, Partial equivariance.

✦

1 INTRODUCTION

D ISENTANGLEMENT learning to learn more interpretable
representations is broadly useful in artificial intelligence

fields such as classification [1], zero-shot learning [2], and
domain adaptation [3], [4]. The disentangled representation is
defined as a change in a single dimension, which corresponds
to unique semantic information. Several works have been
conducted based on this framework.

A major model for enhancing the disentanglement learn-
ing is Variational AutoEncoder (VAE) [5]. Based on VAE,
unsupervised disentangled representation learning has been
elaborated [6]–[10] through the factorizable variations and
control of uncorrelatedness of each dimension of representa-
tions. Moreover, VAE models that handle the shape of prior
as a Gaussian mixture [11] or von Mises-Fisher [12] were
also developed, but the disentanglement is still incomplete.
As a critical point, there is a report that unsupervised
disentanglement learning is impossible without inductive
bias [13].

Recently, such inductive bias has been introduced in
various perspectives on transformation of latent vector space.
Intel-VAE [14] proposed the benefit of invertible transforma-
tion of the space to another latent space to provide better data
representation, which includes hierarchical representations.
Group theory based bias also shows significant improvement
on disentanglement [15], [16], whose definition follows [17],
which is based on the group theory. The works show that
equivariant transformation between input and latent vector
space has a key role of disentanglement.
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Inspired by the above works, we propose a Multi-
ple Invertible and partial-equivariant transformation (MIPE-
transformation) method, which is simply insertable to VAEs.
The partial-equivariance is defined by [18] and we follow its
definition: f(g · x) = g · f(x) ∀x ∈ X ,∀g ∈ G′, G′ ⊂ G,
where G′ is a subset of group G (f is partially equivariant
to group G). First, we assume that an encoder is partial-
equivariant and we call it an encoder equivariance condition. The
method adopts the matrix exponential to hold the invertible
property of latent-to-latent (L2L) vector transformation. Then,
we constrain the L2L transformation to a symmetric matrix
exponential to be partial-equivariant to a subgroup between
latent and transformed latent space. Because it extends the
encoder to be partial-equivariant to a subgroup between
input and transformed latent space. The IPE-transformation
generates an uncertain form of latent vector distributions,
so we provide a training procedure to force them to be
close to an exponential family, called exponential family conver-
sion (EF-conversion). This conversion enables the uncertain
distribution to work in the typical training framework of
VAEs. Then, we mathematically show that the multiple uses
of IPE-transformation work as β parameters [6] controlled
for enhancing disentanglement learning. Also, we propose
the implicit semantic mask to induce a semantic mask in the
latent vector space, different to [19]. In experiments with
quantitative and qualitative analysis, MIPE-transformation
shows significant improvement in disentangled representa-
tion learning in 3D Cars, 3D Shapes, and dSprites tasks. Our
main contributions are summarized as follows.

1) We propose to use a symmetric matrix exponential
as a latent-to-latent vector transformation function
for inducing inductive bias based on invertible and
equivariant properties with mathematical analysis.
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2) We provide a training procedure and losses for VAEs
to learn unknown latent vector distribution as an
approximated exponential family.

3) We propose the novel MIPE-transformation archi-
tecture to integrate multiple IPE-transformation and
EF-conversion, which is widely applicable to state-
of-the-art VAEs.

4) We empirically analyze the properties of MIPE-
transformation and validate its effectiveness in dis-
entanglement learning on benchmarks.

2 RELATED WORK

Recently, various works have focused on the unsupervised
disentanglement learning. Previous works are based on [20]
definition. One of the branches is InfoGAN [21] based works
such as IB-GAN [22] implement extra regularizer to improve
informativeness [23]. The other branch is based on the
VAE. β-VAE [6] penalizes Kullback-Leibler divergence (KL
divergence) with weighted hyper-parameters. Factor VAE [8]
and β-TCVAE [7] are trained with total correlation (TC)
to make independent dimensions on a latent vector with
discriminator and divided components of KL divergence
term. Differently, we consider the recent disentanglement
definition based on group theory [17].

Following the definitions of disentangled representation
learning by group theory, several works have emphasized
equivariant and improved disentangled representation learn-
ing. Commutative Lie Group VAE (CLG-VAE) [15] proposed
direct mapping of the latent vector into Lie algebra to
obtain group structure (inductive bias) with constraints:
commutative and hessian loss. Furthermore, Groupified
VAE [16] utilizes Spatial Broadcast Decoder [24] to implement
an equivariant function to the cyclic group with guaran-
teeing commutativity and invertibility of group actions.
Topographic VAE [25] combines Student’s-t distributions
and variational inference. It enforces rotated latent vectors
to be equivariant. On the other hand, we apply unrestricted
prior and posterior for disentanglement learning.

There are several inductive biases to learning unsuper-
vised disentanglement, such as group theory based and
sequential order. In this section, we briefly discuss sequential
order inductive bias even though its method is considered
in different domains such as text and video frames. To
individualize the static (time-invariant) and dynamic (time-
variant), [26], [27] proposed the latent variables one (f ) is
only dependent on the given times series datasets x1:T ,
and the other (z1:T ) is dependent on the x1:T and f .
Moreover [27] propose the novel ELBO with maximizing
mutual information between the input and the latent vectors.
These works empirically show that sequential order which
includes separated latent vectors improves unsupervised
disentanglement learning with diverse qualitative analysis.
Differently in group theory based approaches, the proposed
methods consider equivariant function between input and
latent vector space.

Other VAE approaches implement other prior from
Gaussian distribution to transformed Gaussian distribution,
Gaussian mixture distribution [28] or von Mises-Fisher distri-
bution [12]. InteL-VAE [14] shows that transformed Gaussian
distribution by the invertible function trains hierarchical

representation with manual function. We show more clear
relation of invertibility to disentanglement and improve
VAEs to use its unrestricted form of prior.

Invertible and equivariant Deep Neural Networks have
been investigated with normalizing flows. As proven by [29],
utilized matrix exponential on Neural networks is invertible,
but it only provides mathematical foundations of the tra
nsformation. Matrix exponential is utilized to implement an
invertible and equivariant function to improve the gener-
ative flow compare to linear function [30]. To specify the
exponential familyt, other works contribute uncertainty of
exponential family distribution with Bayesian update [31],
[32]. In addition, [33] hierarchically controls the natural
parameter across the layers and determines the exponential
family distribution with the moment of sufficient statistic.
In our work, we show how to use it for disentanglement
learning.

3 PRELIMINARIES

3.1 Group Theory
Binary operation: Binary operation on a set S is a function

that ∗ : S × S → S, where × is a cartesian product.
Group: A group is a set G together with binary operation

∗, that combines any two elements ga and gb in G, such that
the following properties:

• closure: ga, gb ∈ G⇒ ga ∗ gb ∈ G.
• Associativity: ∀ga, gb, gc ∈ G, s.t. (ga ∗ gb) ∗ gc =

ga ∗ (gb ∗ gc).
• Identity element: There exists an element e ∈ G, s.t.
∀g ∈ G, e ∗ g = g ∗ e = g.

• Inverse element: ∀g ∈ G,∃g−1 ∈ G: g ∗ g−1 = g−1 ∗
g = e.

Group action: Let (G, ∗) be a group and set X , binary
operation · : G×X → X , such that following properties:

• Identity: e · x = x, where e ∈ G, x ∈ X .
• Compatibility: ∀ga, gb ∈ G, x ∈ X, (ga ∗ gb) · x =

ga · (gb · x).
Equivariant map: Let G be a group and X1, X2 be two

sets with corresponding group action of G in each sets:
TX1
g , TX2

g , where g ∈ G. Then a function f : X1 → X2

is equivariant if f(TX1
g ·X1) = TX2

g · f(X1).
Partial Equivariance: [18]: Let subset of G be Υ ⊂ G,

then f is a partially equivariant map to G:

f(TX1
υ ·X1) = TX2

υ · f(X1), where ∀υ ∈ Υ. (1)

Homomorphsim: Let (G, ·), (H, ◦) be two groups. If
mapping function h : G→ H , s.t. h(gi · gj) = f(gi) ◦ f(gj),
then f is called homomorphism.

3.2 Exponential Family
Power density function of the exponential family (PDF)
generalized formulation:

fx(x|θ) = h(x)exp(θ⊺T (x)−A(θ))
= exp(θ⊺T (x)−A(θ) +B(x)),

(2)

where sufficient statistics T (·), log-normalizer A(·), and carrier
or base measure B(·) are known functions, samples x from
distribution, and natural parameter θ.



JUNG et al.:MULTIPLE INVERTIBLE AND PARTIAL-EQUIVARIANT FUNCTION FOR LATENT VECTOR TRANSFORMATION... 3

Fig. 1: The overall architecture of our proposed MIPET-VAE. The invertible and partial-equivariant function ψ(·) for
L2L transformation consists of a symmetric matrix exponential to be 1) invertible and 2) partial-equivariant. Then 3) EF
conversion module converges the distribution of unrestricted ẑ to be EF with Lel loss. Also, it applies KL divergence loss
(Lkl) between the transformed posterior and prior, which are expressed by the power density function of EF. In the last, EF
conversion reduces the computational error (Lcali) between approximated and true KL divergence. 4) The reddish color
represents the integration parts. The blue figures represent each property. The details of the gray box are in Figure 2.

4 METHOD

The overview of a VAE equipped with MIPE-transformation
is shown in Figure 1. The MIPE-transformation has three
main components: 1) IPE-transformation Unit to transform
latent vectors with invertible and partial-equivariant prop-
erties, 2) EF-conversion Unit to extend VAEs to learn the
exponential family distribution of latent vectors, and 3)
integrated training and generation process for multiple uses
of IPE-transformation and EF-conversion.

4.1 Invertible and Partial-Equivariant Function for L2L
Transformation
4.1.1 Invertible Property by Using Matrix Exponential
To guarantee the invertible property of IPE-transformation,
we use a function ψ(·) = eM ∗ · for the transformation,
where M is in n×n real number matrix set Mn(R) [29]. The

operator ∗ is matrix multiplication, and eM =
∑∞
k

Mk

k! .
Our motivation is to use the benefits of injecting explicit
inductive bias for disentanglement [13], [14]. InteL-VAE
effectively extracts hierarchical representation, which in-
cludes low-level features (affect to a specific factor) and high-
level features (affect to complex factors) with an invertible
transformation function [14].

4.1.2 Why Should L2L Transformation Be Equivariant?
Let’s consider equivariant function between the input and
transformed latent vector space, directly used for a decoder

in the VAE frameworks. All L2L transformations do not
extend the encoder equivariance condition to the relation
between input and transformed latent space. This problem is
more precisely shown in Figure 2, which illustrates partial
equivariance condition over the input space X , latent vector
space Z , and its transformed latent vector space Ẑ with
a corresponding group of symmetries GI , GL, and GT ,
respectively. In the VAEs literature, it has not been reported to
restrict L2L transformation to guarantee equivariant function
between two spaces, so we propose a solution to guarantee
at least a part of symmetries to be equivariant.

4.1.3 Equivariance Property with Symmetric Matrix Expo-
nential

To enhance the equivariance of L2L transformation, we set
M of ψ(·) to a symmetric matrix. We show that 1) a group
with the constraint guarantees equivariance of ψ(·) over
the specific group, 2) ψ(·) being equivariant over subset of
symmetries between the input space and transformed latent
vector space, and 3) the constraint increases the probability
of ψ(·) to be in the group (equal to be equivariant over the
subset of symmetries).

We particularly call the transformations as symmetries [34]
to distinguish them from IPE- and I2L-transformations. For
the generality of our method, we consider an arbitrary VAE
model that has no restriction on creating intersections to any
set as Figure 2.
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Fig. 2: GI , and GL are obtained through encoder qϕ (encoder equivariance condition). The left side figure shows the
relation between each space and symmetries. If ψ(·) is equivariant function over all GL, and GT , then there exist Γ, where
Γ : GL → GT , and Ξ ◦ Γ : GI → GT . However, unrestricted ψ(·) has no guarantee to be partial- or full-equivariant. The red
arrows represent our method: L2L transformation guarantees ΓJ : GJL → GJT , and ΞJ ◦ ΓJ : GJI → GJT , given the encoder
equivariance condition Ξ : GI → GL.

TABLE 1: Terms and Notations

z Latent vector from encoder
ψ(·) Invertible function
ẑm Transformed latent vector by ψm(·)
ϵ̂m Transformed prior samples by ψm(·)
θẑm Natural Parameter of posterior
θϵ̂m Natural Parameter of prior
T Sufficient Statistics
A Log-Normalizer
ν Evidence
DKL(·||·) Kullback-Leibler divergence
fx(·) Power Density Function
Mn(R) A set of n× n real matrix
GLn(R) General Linear Group
Symn(R) A set of n× n symmetric real matrix
EM {eM |M ∈Mn(R)}
ES {eS |S ∈ Symn(R)}
GS GS : (eS , ∗)
GI Group of input space for symmetries
GL Group of latent space for symmetries
J GS ∩GL
ψM (·) ψM (·) ∈Mn(R)
ψEM (·) ψEM (·) ∈ EM
ψES (·) ψES (·) ∈ ES
0 zero vector
0n,n n by n zero matrix
X Input space
Z Latent vector space
Ẑ Transformed latent vector space
Ξ GI ×GL → GL
Γ GL ×GT → GT
ΞJ GJI ×GJL → GJL
ΓJ GJL ×GJT → GJT

In the next, we show that matrix exponential with
symmetric matrix partially preserves encoder equivariance
condition better than other matrices.

Proposition 4.1. Any ψ(·) ∈ GS , notated as ψGS (·), is
equivariant to group GS .

Proof. The group GS is closed to matrix multiplica-
tion, and its element is always a symmetric matrix by
definition. Then, any two elements in GS are commuta-
tive because if matrix multiplication of two symmetric
matrices is symmetric then both are commutative. As a

result, ψGS (·) and group elements of GS are commutative
(GS is an abelian group). Because of the commutativity,
ψGS (gs ◦ z) = eSgsz = gse

Sz = gs ◦ ψGS (z) for gs ∈ GS
if the group action ◦ is set to matrix multiplication, where
ψGS ∈ GS . This equation satisfies the general definition of
an equivariant function that a function f(·) is equivariant if
f(g ◦ z) = g ◦ f(z) for all g in a group G by matching f , g,
and G to ψGS , gs, and GS , respectively. ■

Proposition 4.2. If qϕ is equivariant over defined on group of
symmetries GaI and GaL, then ψGS (qϕ(·)) is equivariant to sym-
metries in GI corresponding to GS ∩GL and GT corresponding
to GS ∩GL by the equivariance of qϕ.

Proof. The function ψGS (·) is an equivariant function over
group elements in GS ∩ GL by Proposition 4.1. Then, the
composite function, ψGS (·) and qϕ, is an equivariant function
of GI corresponding to GS ∩GL and GT corresponding to
GS ∩ GL. Let gaL be a group element in GS ∩ GL, and gaI
is a group element in GI corresponding to GS ∩ GL, and
gaT is a group element where corresponding to GS ∩GL on
the latent vector space transformed from the original latent
vector space. Then, group element gaT is equal to gaL:

ẑ1 = ψGS (z1), and (3)
ẑ2 = ψGS (z2) = ψGS (g

a
Lz1) = gaLψGS (z1) (∵ Prop. 4.1),

(4)
then gaLψGS (z1) = gaTψGS (z1) (∵ ẑ2 = gaT ẑ1)

⇒ (gaL − gaT )ψGS (z1) = 0,
(5)

where 0 is a zero vector. Eq. 5 is defined when ∀z ∈ Z by
the equivariance definition. In other words, Eq. 5 is satisfied
only if the kernel (linear algebra) of gaL − gaT , notated as
ker(gaL − gaT ), includes the basis of Rn vector space. If the
standard basis of Rn vector space is in ker(gaL − gaT ), then
(gaL− gaT ) = 0n,n, where 0n,n is an n by n zero matrix. Other
bases of Rn vector space are expressed by the standard basis.
Therefore gaL − gaT = 0n,n.

Then, ψGS (g
a
Lz1) = gaLψGS (z1) = gaTψGS (z1). The

encoder is an equivariant function over input space X as
qϕ(g

a
Ix1) = gaLqϕ(x1). Mixing two equivarience property, we
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Fig. 3: Equivariant map: X , Z , and Ẑ are input space, latent
vector space, and transformed latent vector space by L2L
transfomration function ψ(·) : Rn → Rn. respectively. x ∈ X ,
z ∈ Z , and ẑ ∈ Ẑ .

can derive another equivariance relation gaTψGS (qϕ(x1)) =
ψGS (qϕ(g

a
Ix1)) This result implies that the equivariance

between input space and a latent space is preserved for
GS ∩GL if the latent vector z is transformed by ψGS .■

We show that ψGS preserves equivariance between GaL
and GaI . If there exists equivariant function between input
and latent vector space, there should be a group GL for a
latent space and its corresponding group GI in an input
space by definition of equivariance (qϕ(gIx) = gLqϕ(x)).

In other words, ψGS (·) guarantees to preserve the
equivariance of I2L-transformation to certain symmetries
in GS ∩GL after IPE-transformation as shown in Figure 2.

Let P (B) be the probability of ψ(·) ∈ B for a subset
B ⊂ Mn(R) after VAE training, and Pr(ψB ∈ B′) be the
conditional probability of ψ(·) ∈ B′ given ψ(·) ∈ B.

Then,

Proposition 4.3. Pr(ψES (·) ∈ GS) > Pr(ψEM (·) ∈ GS) >
Pr(ψM (·) ∈ GS).

Proof. All eS ∈ ES are in EM since Symn(R) ⊂Mn(R).
However, EM ̸⊂ ES because eS is always symmetric, but
eM can be an asymmetric matrix. All elements of ES
are symmetric because of the matrix exponential property
that eM

⊺
= (eM )⊺. If M is a symmetric matrix then

eM
⊺
= eM = (eM )⊺. Therefore, if M is symmetric then

the exponential of M is also symmetric. We show a counter

example to EM ⊂ ES . When M =

[
1 1
0 1

]
,

e
M

=

∞∑
k=0

1

k!
M

k

= I +

[
1 1
0 1

]
+

1

2!

[
1 1
0 1

]2

+ · · · +
1

(n− 1)!

[
1 1
0 1

](n−1)

+ · · ·

= I +

[∑∞
n=0

1
n! 1 +

∑∞
n=0

1
(n−1)!

0
∑∞
n=0

1
n!

]
=

[
1 + e 1 + e
0 1 + e

]
.

(6)

The matrix eM is asymmetric and not in ES . Therefore
EM ̸⊂ ES . Therefore, the probability Pr(ψES (·) ∈ GS) =
P (GS)
P (ES)

is greater than Pr(ψEM (·) ∈ GS) = P (GS)
P (EM ) . In

the same way, Pr(ψEM (·) ∈ GS) > Pr(ψM (·) ∈ GS) =
P (GS)

P (Mn(R)) because EM ⊂ Mn(R) and non-invertible func-
tions are only in Mn(R). ■

Therefore, ψES clearly increases the probability of preserv-
ing a certain type of equivariance compared to unrestricted
ψ functions.

The conditional probability Pr(ψES (·) ∈ GS),
Pr(ψEM (·) ∈ GS), and Pr(ψM (·) ∈ GS) is changed
by the distribution of the observation of ψ(·), which de-
pends on the model parameters. However, the inequality
Pr(ψES (·) ∈ GS) > Pr(ψEM (·) ∈ GS) > Pr(ψM (·) ∈ GS)
is not changed regardless of the distribution of observation
of ψ(·). We empirically validate the impact of equivariance
with the uncertain P (·) to disentanglement in Section 6.1.5.

4.1.4 Relation Between ψ(·) and Disentanglement

In addition to invertible and partial-equivariant properties,
our IPE-transformation also guarantees zero Hessian ma-
trix, which enhances disentanglement without any addi-
tional loss of [35]. Hessian matrix of the transformation
∇2

zψ(z) = ∇z(∇ze
Mz) = 0 because of the irrelevance

of M to z. By this property, ψ(·) leads that independently
factorizes each dimension [35], and it injects group theory
based inductive bias simultaneously. This is because the
group decomposition of z space G = G1 × G2 × · · · × Gk
corresponds to group decomposition of the transformed
latent vector ẑ space G′ = G′

1 × G′
2 × · · · × G′

k such that
each G′

i is fixed by the action of all the Gj for j ̸= i [16], [36].
This correspondence of decomposition is expected to transfer
the independence between dimensions of z to the space of
ẑ [17].

Algorithm 1 Unit invertible and partial-equivariant Transfor-
mation Function (UIPET-function)

Require: matrices M1, and M2

Ensure: invertible and partial-equivariant Transformation
Function ψ(·)
M1, M2 ← 1

2 (M1 +M⊺
1 ),

1
2 (M2 +M⊺

2 )
ψ(·)←M⊺

1M2

Algorithm 2 IE-Transformation

Require: latent vector z, and samples from prior ϵ
Ensure: transformed latent vector ẑ, and transformed nor-

mal Guassian distribution samples ϵ̂
ψ(·)← UIET-function (M1, M2)
ẑ, ϵ̂← ψ(z), ψ(ϵ)

Algorithm 3 KL Divergence & Posterior Estimator

Require: latent vector ẑm, prior samples ϵ̂m,
Natural Parameter Generator Ω1(·), Ω2(·)
log-normalizer A, sufficient statistics T , and evidence ν.

Ensure: KL divergence DKL(fẑ(ẑ|θẑ)||fϵ̂(ϵ̂|θϵ̂)), and poste-
rior p(θ|X,X ,ν)
θẑ , θϵ̂ ← Ω1(ẑ), Ω2(ϵ̂)
A← implicit semantic mask(A) {Equation 22}
p(θ|X,X ,ν) ← exp[θẑ(

∑B
i=1 T (ẑi) + νθϵ̂) − A(θẑ)]

{Equation 8}
DKL(fẑ(ẑ|θẑ)||fϵ̂(ϵ̂|θϵ̂))← A(θϵ̂)−A(θẑ)+θ⊺

ẑ
∂A(θẑ)

∂θẑ
−

θ⊺
ϵ̂
∂A(θϵ̂)
∂θϵ̂

{Equation 12}
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Algorithm 4 EF-Conversion Loss

Require: KL divergence DKL(fẑ(ẑ|θẑ)||fϵ̂(ϵ̂|θϵ̂)), posterior
p(θ|X,X ,ν), µ,σ

Ensure: Regularization Lreg
Lel ← p(θ|X,X ,ν) + λmDKL(fẑ(ẑ|θẑ)||fϵ̂(ϵ̂|θϵ̂))
Lel ← ||∇ẑm,ϵ̂m,λmLel||

2
2

DKL(qϕ(z|x)||p(z))← 0.5
∑D
d=1(1+2 log σj−µ2

j−σ2
j ) [5]

Lcali ← MSE(DKL(fẑ(ẑ|θẑ)||fϵ̂(ϵ̂|θϵ̂)),
DKL(qϕ(z|x)||p(z))) {Equation 21}
L ← Lel + Lcali {Equation 33}

4.2 Exponential Family Conversion for Unknown Prior
In VAE frameworks, the Gaussian normal distribution is
applied as a prior. However, a prior from data is usually
unknown and may not follow the Gaussian distribution [14].
As a solution, we present a training procedure for VAEs
to build an exponential family distribution from a latent
variable of an arbitrary distribution. Then, we introduce
training losses obtained from the unit IPE-transformation
function and EF-conversion.

4.2.1 Elements of Exponential Family Distribution Settings
First, we set sufficient statistics T (·), log-normalizer A(·),
and carrier or base measure B(·) are deterministic functions
by maximizing conjugate prior for parameter ξ. To determine
the natural parameter of posterior and prior θẑm , and ϵ̂m, we
use a natural parameter generator (NPG) designed by multi-
layer perceptron [37]. As introduced in [37], [38], we assume
exponential family always admits a conjugate prior:

q(θ|ξ,ν) = exp(νθ⊺ξ − νA(θ) +B′(ξ,ν)), (7)

whereB′(·) is a normalize coefficient and ν is evidence, and it is
expressed by prior natural parameter ξ. However, generated
natural parameter θẑm is not guaranteed as the appropriate
parameter of the exponential family corresponds to conjugate
prior. To satisfy this condition, we assume observation is a set
of independent identically distributed, then Eq. 2 is modified:
p(X|θ) =

∏N
n=1 h(xn)exp(θ⊺ ∑N

n=1 T (xn) − A(θ)) [38],
where observation X = {x1, · · ·xN}. In the next, we
multiply the modified formation by the prior Eq. 7 to obtain
the posterior distribution [38] as Eq. 8.

4.2.2 Distribution Approximation As an Exponential Family
The procedure represents a posterior distribution in the
exponential family by adopting the following form:

p(θ|X, ξ,ν) ∝ exp(θ⊺(
N∑
n=1

T (xn) + νξ)−A(θ)), (8)

where sufficient statistics T (·) and log-normalizer, A(·) are
known functions, samples X = {x1,x2, . . . ,xn} from
distribution, and natural parameter of posterior θ and of
prior ξ [38]. The functions T (·), and A(·) are deterministic
functions to maximize posterior distribution. The evidence
is implemented as learnable parameters ν ∈ Rn×n. The
natural parameter is generated by a multi-layer perceptron
as [37]. This general form approximating an exponential
family distribution with learnable parameters can extend
VAEs to use a wider distribution for latent variables by

simply matching X to generated latent variables. After IPE-
transformation, we can apply the form by using the ẑm, θẑm ,
and θϵ̂m for X, θ, and ξ, respectively.

4.2.3 EF Similarity Loss
We added a loss to converge the unrestricted distributions of
ẑ to the power density function of the exponential family by
constraining the posterior maximization as:

maximize log p(θẑm |ẑm,θϵ̂m ,νm)

s.t. DKL(fx(x|θẑm)||fx(x|θϵ̂m)) ≥ 0
(9)

⇒ Ls(ẑm, ϵ̂m) = log p(θẑm |ẑm,θϵ̂m ,νm)+

λmDKL(fx(x|θẑm)||fx(x|θϵ̂m))
(10)

⇒ Lel := ||∇ẑm,ϵ̂m,λmLs||
2
2 = 0. (11)

This provides EF similarity loss in Eq. 33. The notation
θk is a generated natural parameter by a given k ∈ {ẑ, θ̂},
and fx(x|θ) is a power density function of the exponential
family. Moreover, λm is a trainable parameter for optimizing
the Lagrange multiplier, and DKL(fx(x|θẑm)||fx(x|θϵ̂m))
is a KL divergence of the exponential family.

4.2.4 KL Divergence for Evidence of Lower Bound
The KL divergence of Gaussian distribution [5] is computed
using mean and variance, which are the parameters of a Gaus-
sian distribution. To introduce a loss as the KL divergence
of Gaussian distribution, we compute KL divergence of the
exponential family in Eq. 8 using the learnable parameter T (·)
and A(·) with given natural parameter θẑ and θϵ̂, expressed
as:
Lkl := DKL(fx(x|θẑm)||fx(x|θϵ̂m))

= A(θϵ̂)−A(θẑ) + θ⊺
ẑ∇θẑA(θẑ)− θ⊺

ϵ̂∇θϵ̂
A(θϵ̂).

(12)

Because DKL(fx(x|θẑ)||fx(x|θϵ̂)) is followed as:

DKL(fx(x|θẑ)||fx(x|θϵ̂)) =

∫ ∞

−∞
fx(x|θẑ) log fx(x|θẑ)dx

−
∫ ∞

−∞
fx(x|θẑ) log fx(x|θϵ̂)dx.

(13)

We designed sufficient statistics as matrix multiplication
(multi-layer perceptron). Then,∫ ∞

−∞
fx(x|θẑ) log fx(x|θẑ)dx =

∫ ∞

−∞
fx(x|θẑ)·

[θ
⊺

ẑT(x) − A(θẑ) + B(x)]dx

= −A(θẑ)

∫ ∞

−∞
fx(x|θẑ)dx

+

∫ ∞

−∞
fx(x|θẑ)[θ

⊺

ẑT(x) + B(x)]dx

= −A(θẑ) + θ
⊺

ẑ

∫ ∞

−∞
T (x)fx(x|θẑ)dx

+

∫ ∞

−∞
B(x)fx(x|θẑ)dx,

(14)
and∫ ∞

−∞
fx(x|θẑ) log fx(x|θϵ̂)dx = −A(θϵ̂)

+ θ⊺
ϵ̂

∫ ∞

−∞
T (x)fx(x|θϵ̂)dx

+

∫ ∞

−∞
B(x)fx(x|θϵ̂)dx.

(15)



JUNG et al.:MULTIPLE INVERTIBLE AND PARTIAL-EQUIVARIANT FUNCTION FOR LATENT VECTOR TRANSFORMATION... 7

∴ DKL(fx(x|θẑ)||fx(x|θϵ̂)) = A(θϵ̂)−A(θẑ)

+ θẑ

∫ ∞

−∞
T (x)fx(x|θẑ)dx

− θϵ̂

∫ ∞

−∞
T (x)fx(x|θϵ̂)dx.

(16)

The mean of the sufficient statistic is followed as:∫ ∞

−∞
T (x)fx(x|θ)dx =

∂A∗(θ)

∂θ
≈ ∂A(θ)

∂θ
∵ A∗(θ) = θ⊺A∗,

(17)
where A∗(·) is a true log-partition function of the exponential
family (ideal case of A(·)). However, estimating A∗ is
difficult, and there is no direct method without random
samplings, such as mini-batch weighted sampling or mini-
batch stratified sampling [7]. Then, we approximate A∗ to A,
and train A to be close to A∗. Consequently, we obtain KL
divergence of the exponential family as:∫ ∞

−∞
fx(x|θẑ) log fx(x|θẑ) = −A(θẑ) + θ⊺

ẑ
∂A(θẑ)

∂θẑ

+

∫ ∞

−∞
fx(x|θẑ)B(x)dx,

(18)∫ ∞

−∞
fx(x|θẑ) log fx(x|θϵ̂) = −Z(θϵ̂) + θ⊺

ϵ̂

∂A(θϵ̂)

∂θϵ̂

+

∫ ∞

−∞
fx(x|θẑ)B(x)dx.

(19)

Therefore, the final Kullback-Leibler divergence of exponen-
tial family is followed as:

DKL(fx(x|θẑ)||fx(x|θϵ̂)) = A(θϵ̂) − A(θẑ) + θ
⊺

ẑ
∂A(θẑ)

∂θẑ
− θ

⊺
ϵ̂

∂A(θϵ̂)

∂θϵ̂

.

(20)

4.2.5 KL Divergence Calibration Loss
To reduce the error between the approximation and true
matrix for the matrix exponential [39], we add a loss to
minimize the difference of their KL divergence measured by
mean squared error (MSE) as:

Lcali = MSE(DKL(qϕ(z|x)||pθ(z)),
DKL(fx(x|θẑm)||fx(x|θϵ̂m))),

(21)

which is the KL divergence calibration loss (Lcali).

4.2.6 Implicit Semantic Mask
We propose an implicit semantic mask to improve disentan-
glement learning. We apply mask matrixM which consists
of 0 or 1 element to log-normalizer to prevent less effective
weight flow as:

Mij =

{
1 if |Wij | ≥ µ|Wij | − λσ|Wij |

0 otherwise
, (22)

where W is the weight of log-normalizer, λ is a hyper-
parameter, µ|Wij |, and σ|Wij | are the mean, and standard
deviation of weight respectively. Previous work [19] utilizes
a semantic mask in input space directly, but we inject the
semantic mask implicitly on the latent space.

TABLE 2: VAE architecture for dSprites dataset.

Encoder Decoder
Input 64 × 64 binary image input ∈ R10

4 × 4 conv. 32 ReLU. stride 2 FC. 128 ReLU.
4 × 4 conv. 32 ReLU. stride 2 FC. 4 × 4 × 64 ReLU.
4 × 4 conv. 64 ReLU. stride 2 4 × 4 upconv. 64 ReLU. stride 2.
4 × 4 conv. 64 ReLU. stride 2 4 × 4 upconv. 32 ReLU. stride 2.

FC. 128. FC. 2 × 10 4 × 4 upconv. 32 ReLU. stride 2.
4 × 4 upconv. 1. stride 2

TABLE 3: VAE architecture for 3D Shapes, and 3D Cars
datasets. For exceptional case, CLG-VAE, we ues ten dimen-
sion size on 3D Shapes dataset [15].

Encoder Decoder
Input 64 × 64 × 3 RGB image input ∈ R6 (3D Shapes), R10 (3D Cars)
4 × 4 conv. 32 ReLU. stride 2 FC. 256 ReLU.
4 × 4 conv. 32 ReLU. stride 2 FC. 4 × 4 × 64 ReLU.
4 × 4 conv. 64 ReLU. stride 2 4 × 4 upconv. 64 ReLU. stride 2.
4 × 4 conv. 64 ReLU. stride 2 4 × 4 upconv. 32 ReLU. stride 2.

FC. 256. FC. 2 × 10 4 × 4 upconv. 32 ReLU. stride 2.
4 × 4 upconv. 3. stride 2

TABLE 4: dSprites and 3D Cars: epochs for dSprites and 3D
cars are 30 and 200, respectively.

models hyper-parameters values

common

batch size 256
epoch {30, 200}
optim Adam

lr 4e-4
lr for MIPET 4e-4
weight decay 1e-4

latent dim 10
β-VAE # of IE and EF {1, 2, 4, 10}

β-TCVAE
β {4, 6}

# of IE and EF {1, 3}
α, γ 1.0

CLG-VAE

λdecomp 40
λhessian 40

forward group 0.2
group reconst {0.2, 0.5, 0.7}

TABLE 5: lr is learning rate, latent dim is dimension size of
latent vector, group reconst is group reconstrunction, and
forward group is forward group pass.

models hyper-parameters values

common

batch size 256
epoch 67
optim Adam

lr 4e-4
lr for MIPET 4e-4

β-VAE
# of IE and EF {1, 2, 4, 10}
weight decay 0.0

latent dim 6

β-TCVAE

β {4, 6}
# of IE and EF {1, 3}

α, γ 1.0
weight decay 1e-4

latent dim 6

CLG-VAE

λdecomp 40
λhessian 40

forward group 0.2
group reconst {0.2, 0.5, 0.7}
weight decay 0.0

latent dim 10

4.3 Integration for Multiple IPE-Transformation and EF-
Conversion

We mathematically extend IPE-transformation to MIPE-
transformation, which is the equivalent process of β-VAE to
enhance disentanglement. Each IPE-transformation function
operates independently, then the reconstruction error for
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objective function is defined as:

Lrec :=
1

k

k∑
i=1

[∫
qi(ẑi|x) log pθ(x|ẑi)dẑi

k∏
j=1,j ̸=i

∫
qj(ẑj |x)dẑj

]

=
1

k

k∑
i=1

E
qϕ,ψi

(z|x) log pθ(x|ψi(z)),

(23)

where ẑi = ψi(z). Becuase the log likelihood of p(x) can be
derived as follows:

log pθ(x) =

∫ k∏
i

q1(ẑi|x) log pθ(x)dẑ′ (24)

=

∫ k∏
i

q1(ẑi|x) log
pθ(x, ẑ1, ẑ2, · · · , ẑk)
pθ(ẑ1, ẑ2, · · · , ẑk|x)

dẑ′ (25)

=

∫ k∏
i

q1(ẑi|x)·

[
log

pθ(x, ẑ1, ẑ2, · · · , ẑk)
q(ẑ1, ẑ2, · · · , ẑk|x)

− log
pθ(ẑ1, ẑ2, · · · , ẑk|x)
q(ẑ1, ẑ2, · · · , ẑk|x)

]
dẑ′

(26)

≧
∫ k∏

i

q1(ẑi|x) log
pθ(x, ẑ1, ẑ2, · · · , ẑk)
q(ẑ1, ẑ2, · · · , ẑk|x)

dẑ′ (27)

=

∫ k∏
i

q1(ẑi|x)·

[
log pθ(x|ẑ1, ẑ2, · · · , ẑk) + log

p(ẑ1, ẑ2, · · · , ẑk)
q(ẑ1, ẑ2, · · · , ẑk|x)

]
dẑ′

,

(28)

where dẑ′ = dẑ1dẑ2 · · ·dẑk. Each IPE-transformation func-
tion operates independently, then log pθ(x|ẑ1, ẑ2, · · · , ẑk) =
−(k − 1) log pθ(x) + Πki=1pθ(x|ẑi). Then,

pθ(x|ẑ1, ẑ2, . . . , ẑk) =
pθ(ẑ1, ẑ2, . . . , ẑk|x)pθ(x)

pθ(ẑ1, ẑ2, . . . , ẑk)

=

pθ(x)

k∏
i=1

pθ(ẑi|x)∏k
i=1 pθ(ẑi)

(∵ (ẑi ⊥⊥ ẑjs|x))

=

k∏
i=1

pθ(ẑi|x)pθ(x
1
k )

pθ(ẑi)

= pθ(x)
−(k−1)

k∏
i=1

pθ(ẑi|x)pθ(x)
pθ(ẑi)

= pθ(x)
−(k−1)

k∏
i=1

pθ(x|ẑi),

(29)

where ẑjs = ∩kj=1,j ̸=iẑj . Therefore,

∫ k∏
i=1

qi(ẑi|x) log pθ(x|ẑ1, ẑ2, · · · , ẑk)dẑ′

=

∫ k∏
i=1

qi(ẑi|x)
[
− (k − 1) log pθ(x) +

k∏
i=1

pθ(x|ẑi)
]
dẑ′

= −(k − 1) log pθ(x) +

∫ k∏
i=1

qi(ẑi|x)
k∏
i=j

pθ(x|ẑj)dẑ′.

(30)

Then,

log pθ(x) ≥
1

k

k∑
i=1

[∫
qi(ẑi|x) log pθ(x|ẑi)dẑi

k∏
j=1,j ̸=i

∫
qj(ẑj |x)dẑj

]

−
∫ k∏

i

q1(ẑi|x) log
∏k
i=1 qi(ẑi|x)∏k
i=1 p(ẑi)

dẑ′

=
1

k

k∑
i=1

E
q(ẑi|x)

log pθ(x|ẑi)

−
k∑
i=1

[
DKL(qϕ(ẑi|x)||p(ẑi))

k∏
j=1,j ̸=i

∫
qj(ẑj |x)dẑj

]

=
1

k

k∑
i=1

E
qϕ(ẑi|x)

log pθ(x|ẑi) −
k∑
i=1

DKL(qϕ(ẑi|x)||p(zi))

=
1

k

[ k∑
i=1

E
qϕ(ẑi|x)

log pθ(x|ẑi) − kDKL(qϕ(ẑi|x)||p(ẑi))
]
.

(31)

Therefore, we define ELBO as:

L′(ϕ, θ, ψi∈[1,k];x) =
1

k

k∑
i=1

E
qϕ,ψi

(zi|x) log pθ(x|ψi(z))−

k∑
i=1

DKL(qϕ,ψi(z|x)||pψi(z)).

(32)

However, following Eq. 32, k samples are generated, and each
sample is disentangled for different factors. We implement
the output as the average of the sum of the k samples to
obtain a single sample with a superposition effect from
k samples. Moreover, the KL divergence term in Eq. 32
represents that increasing number of MIPE-transformation is
equal to increasing β hyper-parameter in β-VAE [6].

The VAEs equipped with MIPE-transformation (MIPET-
VAEs) can be trained with the following loss:

L(ϕ, θ, ψi∈[1,k];x) = Lrec − Lkl − Lel − Lcali. (33)

The whole process to define objective function is repre-
sented in Algorithm 1-5.

5 EXPERIMENT SETTINGS

5.0.1 Models
As baseline models, we select VAE, β-VAE, β-TCVAE, and
CLG-VAE. These models are compared to their extension to
adopt MIPET, abbreviated by adding the MIPET prefix. We
apply the proposed method to β-TCVAE only with the EF
similarity loss term because β-TCVAE penalizes the divided
KL divergence terms. We set the same encoder and decoder
architecture in each model to exclude the overlapped effects.
Also, we follow the same model architecture which are
introduced in previous works [8] and model details are in
Table 2-3.

5.0.2 Datasets
We compare well-known VAEs to CHIC-VAEs: VAE, β-VAE,
β-TCVAE, and CLG-VAE on the following data sets with
1) dSprites [40] which consists of 737,280 binary 64 × 64
images of dSprites with five independent ground truth
factors(number of values), i.e. shape(3), orientation(40),
scale(6), x-position(32), and y-position(32). 2) 3D Shapes [41]
which consists of 480,000 RGB 64 × 64 × 3 images of 3D
Shapes with six independent ground truth factors: shape(4)
orientation(15), scale(8), wall color(10), floor color(10), and
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TABLE 6: Performance (mean ± std) of four metrics on dSprites, 3D Shapes, and 3D Cars. The α = 1 and γ = 1 of β-TCVAE
as [7].

dSprites
Disentanglement Metric

FVM ↑ MIG ↑ SAP ↑ DCI ↑
original MIPET original MIPET original MIPET original MIPET

β-VAE 69.15(±5.88) 74.19(±5.62) 9.49(±8.30) 19.72(±11.37) 2.43(±2.07) 5.08(±2.90) 18.57(±12.41) 28.81(±10.19)
β-TCVAE 78.50(±7.93) 79.87(±5.80) 26.00(±9.06) 35.04(±4.07) 7.31(±0.61) 7.70(±1.63) 41.80(±8.55) 47.83(±5.01)
CLG-VAE 79.06(±6.83) 81.80(±3.17) 23.40(±7.89) 36.34(±5.55) 7.37(±0.96) 8.03(±0.83) 37.68(±7.83) 44.73(±5.11)

Control-VAE 62.36(±8.62) 67.71(±6.41) 4.36(±2.86) 7.34(±4.10) 2.11(±1.88) 1.93(±1.63) 10.40(±3.42) 15.18(±4.61)

3D Shapes
Disentanglement Metric

FVM ↑ MIG ↑ SAP ↑ DCI ↑
original MIPET original MIPET original MIPET original MIPET

β-VAE 71.76(±12.26) 75.19(±8.16) 37.33(±22.34) 47.37(±10.13) 7.48(±4.12) 9.20(±2.44) 52.07(±17.92) 54.95(±8.99)
β-TCVAE 76.62(±10.23) 80.59(±8.57) 52.93(±20.5) 54.49(±9.44) 10.64(±5.93) 11.58(±3.32) 65.32(±11.37) 66.22(±7.32)
CLG-VAE 77.04(±8.22) 80.17(±8.43) 49.74(±8.18) 53.87(±7.41) 9.20(±2.44) 12.83(±3.01) 57.70(±8.60) 60.74(±7.77)

Control-VAE 71.05(±14.35) 71.89(±8.33) 24.88(±13.68) 32.28(±10.74) 6.60(±3.59) 7.14(±2.09) 40.08(±13.45) 43.06(±8.68)

3D Cars
Disentanglement Metric

FVM ↑ MIG ↑ SAP ↑ DCI ↑
original MIPET original MIPET original MIPET original MIPET

β-VAE 89.48(±5.22) 88.95(±5.94) 6.90(±2.70) 7.27(±1.99) 1.30(±0.48) 1.88(±1.12) 19.85(±4.87) 18.90(±4.49)
β-TCVAE 95.84(±3.40) 96.43(±2.42) 11.87(±2.90) 10.80(±1.22) 1.55(±0.38) 1.88(±1.12) 27.91(±4.31) 26.08(±2.47)
CLG-VAE 86.11(±7.12) 91.06(±5.09) 6.19(±2.42) 8.51(±2.11) 2.06(±0.60) 1.99(±0.93) 16.91(±4.01) 18.31(±2.83)

Control-VAE 88.76(±7.66) 89.10(±6.90) 4.68(±2.67) 5.08(±2.68) 1.16(±0.74) 1.45(±0.86) 14.70(±3.84) 15.22(±4.15)

TABLE 7: p-value of t-test for original vs MIPET results of Table 6, which are averaged over models (bold: positive and
significant, italic: positive but insignificant, normal: lower performance).

p-value VAEs CLG-VAE β-TCVAEs
FVM MIG SAP DCI FVM MIG SAP DCI FVM MIG SAP DCI

dSprites 0.000 0.000 0.000 0.000 0.030 0.000 0.005 0.000 0.281 0.000 0.170 0.009
3D Shapes 0.080 0.007 0.016 0.191 0.085 0.029 0.000 0.088 0.111 0.383 0.277 0.390

3D Cars 0.659 0.250 0.003 0.583 0.003 0.000 0.630 0.071 0.278 0.923 0.119 0.933

object color(10). 3) 3D Cars [42] which consists of 17,568 RGB
64 × 64 × 3 images of 3D Shapes with three independent
ground truth factors: car models(183), azimuth directions(24),
and elevations(4).

5.0.3 Training
We set 256 mini-batch size in the datasets (dSprites, 3D
Shapes, and 3D Cars), Adam optimizer with learning
rate 4 × 10−4, β1 = 0.9, β2 = 0.999, and epochs from
{30, 67, 200} as a common setting for all the comparative
methods. For the comparison, we follow training and in-
ference on the whole dataset. We train each model for 30,
67, and 200 epochs on the dSprites, 3D Shapes, and 3D
Cars, respectively, as introduced in [8], [43]. We tune β from
{1, 2, 4, 10} and {4, 6} for β-VAE and β-TCVAE, respectively.
We set the dimension size of the latent vectors from {6, 10}
for 10 on dSprites and 3D Cars datasets and 6 for 3D Shapes,
but we set 10 for CLG-VAE because it sets 10 dimensions
size on 3D Shapes in [15]. Regarding the CLG-VAE, we fix
λdecomp, λhessian, and forward group features as 40, 20, and 0.2,
respectively. Because the hyper-parameters showed the best
result in [15]. We set group reconstruction from {0.2, 0.5, 0.7}.
For Control-VAE, we set the maximum KL divergence value
from {10, 12, . . . , 20}. In addition, we set masking ratio λ
from {0.0, 0.5, . . . 2.0,∞}. To check the impact of MIPE-
transformation, we do not consider the Groupified VAE
because the latter is implemented with an extended decoder
(different capacity).

5.0.4 Evaluation
We conduct experiments on NVIDIA A100, RTX 2080 Ti, and
RTX 3090. We set 100 samples to evaluate global empirical

variance in each dimension and run it a total of 800 times to
estimate the FVM score introduced in [8]. For the MIG [7],
SAP [44], and DCI [23], we follow default values introduced
in [45], training and evaluation 100 and 50 times with 100
mini-batches, respectively. We evaluate four disentanglement
metrics for a less biased understanding of the actual states of
disentanglement.

6 RESULTS AND DISCUSSION

6.1 Quantitative Analysis
6.1.1 Disentanglement Metrics
We set the number of IPE-transformation functions to be
equal to balancing hyper-parameter β on β-VAE because
of Eq. 33. The number of IPE-transform functions of β-
TCVAE is 3. However, in the case of CLG-VAE, we set it
to 1 because its approach is based on the group theory, not
directly controlling a KL divergence term such as β-VAE. We
average each model performance value with 40, 20, 60, and
30 cases in VAEs, β-TCVAEs, Control-VAE and CLG-VAEs,
respectively.

As shown in Table 6, MIPET-VAEs disentanglement
performance is broadly improved with four metrics on
each dataset. In particular, most FVM results significantly
affect the model performance and stability on all datasets.
Therefore, our proposed method obtains a specific dimension
that corresponds to a specific single factor. These results
imply that applied to MIPE-transformation functions on
VAEs elaborate disentangled representation learning.

We additionally estimate the p-value of each metrics over
models in Table 7. Previous work shows the average case of
each models [16].
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TABLE 8: Impact of the number of MIPE-transformation function on the β-TCVAE and β-VAE with dSprites, 3D Shapes,
and 3D Cars datasets in terms of the four metrics. The blue and red box plots represent each model’s single and multiple
IPE-transformation cases, respectively. (A-n: MIPET-β-TCVAE (4), B-n: MIPET-β-TCVAE (6), C-n: MIPET-β-VAE, n: the
number of MIPE-transformation).

dataset Metrics
FVM IMG SAP DCI

dSprites

3D Shapes

3D Cars

TABLE 9: Impact of the mask (mean±std.) and its ratio λ in Eq. 22 on 3D Cars. (∞: no masking case, gray box: the best
setting over all metrics, bold text: the best in each metric.) Each model runs with ten random seeds.

ratio β-VAE (1) CLG-VAE (0.5)
λ FVM ↑ MIG ↑ SAP ↑ DCI ↑ FVM ↑ MIG ↑ SAP ↑ DIC ↑

0.0 90.46(±6.50) 4.84(±2.32) 1.29(±0.81) 16.76(±4.68) 90.06(±4.44) 9.28(±2.09) 1.82(±0.82) 19.12(±3.41)
0.5 91.35(±5.52) 5.37(±2.74) 1.17(±0.67) 16.65(±3.76) 88.69(±4.78) 6.90(±1.96) 1.85(±0.67) 17.52(±3.16)
1.0 91.78(±6.20) 4.99(±2.27) 1.36(±0.81) 16.50(±2.53) 83.60(±11.48) 8.12(±3.66) 2.37(±1.50) 17.07(±3.89)
1.5 90.04(±5.88) 7.22(±2.87) 1.36(±0.48) 18.23(±2.84) 84.76(±6.86) 7.70(±2.11) 2.05(±0.73) 17.06(±2.77)
2.0 87.79(±8.88) 4.75(±2.49) 1.01(±0.99) 16.64(±3.75) 85.78(±4.18) 7.83(±1.79) 1.91(±0.96) 17.26(±2.07)
∞ 89.43(±11.72) 3.74(±2.32) 0.77(±0.39) 15.45(±4.59) 82.96(±11.84) 8.07(±2.52) 2.32(±1.02) 17.46(±4.07)

We divide each case into four categories: 1) Positive
& Significant, 2) Positive & Insignificant, 3) Negative &
Insignificant, and 4) Negative & Significant, where positive is
when the mean value is higher than baseline and significant
is statistically significant. We estimate the probability of each
category: 1) 50%, 2) 36.11%, and 3) 13.89%. As shown in
Table 7 and the results, half of the cases are statistically
significant, and 86.11% of cases are improved model perfor-
mance. Even though our method shows a lower value than
the baseline, it is not significantly decreased (13.89%). In
addition, averaged results show that our method impacts to
model itself without hyper-parameter tuning. β-TCVAEs is
partially using our method (paragraph Models in Section 5),
so it does not show the whole effect of MIPET, but it improves
model performance in many cases.

6.1.2 Sensitivity to the Number of IPE-transformation and
EF-conversion
We investigate the impact of the MIPE-transformation func-
tion. As presented in Table. 8, MIPE-transformation is better
than IPE-transformation for disentanglement learning on
each dataset. Indeed, MIPET-β-VAEs results more generally
and clearly show the impact of the MIPE-transfomation

function. Our derivation in Section 4.3 clearly explains MIPE-
transformation impact. This result shows the impact of the
multiple uses of IPE-transformation and EF-conversion.

6.1.3 Impact of Implicit Semantic Mask
We set masking hyper-parameter λ from
{0.0, 0.5, · · · , 2.0,∞}, and each model has different λ
for best case. In Table 9, VAE and CLG-VAE with masked
log-normalizer show better and well-balanced results than
the models without masking, which implies improvement of
disentanglement.

6.1.4 Ablation Study
We conduct an ablation study to evaluate the separate impact
of equivariant property and the EF-conversion. We have
already presented the impact of the multiple uses of IPE-
transform and EF-conversion in the previous paragraph. We
evaluate the impact of the other properties by setting MIPE-
transformation 1) without equivariant (w/o E), which is
implemented as an asymmetric matrix, and 2) without EF-
conversion (w/o EF). To exclude group theory interference
with other methods, we select β-VAE and β-TCVAE. As
the results are shown in Table 10, most of the results show
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TABLE 10: Ablation study for the equivariant property (w/o E), and EF-conversion (w/o EF). Each metric is averaged over
40 and 20 settings of β-VAE and β-TCVAE, respectively.

3D Cars
β-VAE β-TCVAE

MIPET MIPET
(w/o E)

MIPET
(w/o EF) MIPET MIPET

(w/o E)
MIPET

(w/o EF)
FVM ↑ 88.95(±5.94) 82.09(±11.33) 45.23(±6.39) 96.43(±2.42) 91.34(±4.75) 91.43(±4.86)
MIG ↑ 7.27(±1.99) 6.77(±2.41) 0.04(±0.02) 10.80(±1.22) 9.79(±1.07) 9.81(±1.10)
SAP ↑ 1.88(±1.12) 1.76(±1.06) 0.18(±0.12) 1.88(±1.12) 1.35(±0.30) 1.35(±0.30)
DCI ↑ 18.90(±4.49) 17.21(±5.57) 1.67(±1.26) 26.08(±2.47) 25.12(±3.72) 25.16(±3.82)

dSprites
β-VAE β-TCVAE

MIPET MIPET
(w/o E)

MIPET
(w/o EF) MIPET MIPET

(w/o E)
MIPET

(w/o EF)
FVM 74.19(±5.62) 71.54(±8.66) 25.83(±1.16) 79.87(±5.80) 76.39(±7.44) 77.44(±7.15)
MIG 19.72(±11.37) 19.29(±11.79) 0.02(±0.01) 35.04(±4.07) 33.83(±8.06) 21.88(±8.42)
SAP 5.08(±2.90) 4.91(±3.25) 0.21(±0.10) 7.70(±1.63) 7.64(±2.03) 6.84(±1.87)
DCI 28.81(±10.19) 27.51(±11.49) 1.81(±0.08) 47.83(±5.01) 45.10(±6.92) 37.84(±8.85)

3D Shapes
β-VAE β-TCVAE

MIPET MIPET
(w/o E)

MIPET
(w/o EF) MIPET MIPET

(w/o E)
MIPET

(w/o EF)
FVM 75.19(±8.16) 74.91(±10.46) 22.27(±1.29) 80.59(±8.57) 77.90(±8.66) 66.38(±7.57)
MIG 47.37(±10.13) 47.45(±8.98) 0.28(±0.09) 54.49(±9.44) 51.37(±11.54) 36.08(±17.42)
SAP 9.20(±2.44) 9.43(±2.59) 0.26(±0.07) 11.58(±3.32) 10.23(±3.13) 7.13(±3.09)
DCI 54.95(±8.99) 54.23(±9.05) 0.10(±0.02) 66.22(±7.32) 61.18(±8.87) 56.85(±11.72)

TABLE 11: The ratio of seeds to show better performance
with symmetric matrix

dSprites 3D Shapes 3D Cars
0.58 0.56 0.67

TABLE 12: Training complexity.

# of IE Complexity
0 × 1.00
1 × 0.75
3 × 0.50
4 × 0.33

that MIPET-VAEs performance is better than other cases. In
particular, MIPET (w/o EF) results are lower than MIPET
(w/o E) results and are clearly shown in all cases.

6.1.5 Impact of Symmetric Matrix Exponential
We empirically show the benefit of using a symmetric matrix
for ψ. Table 11 shows the ratio of runs with a symmetric
matrix, which shows better performance than unrestricted
matrices, to the total 240 (60 models × 4 metrics) runs for
each dataset. All results are higher than 0.5, which implies
that the constraint enhances I2L equivariance even with
uncertain factors.

6.1.6 Additional Experiment of Computing Complexity
We additionally estimate the computing complexity depend-
ing on the number of IPE-transformation. The results are in
Table 12 and represent the training time complexity compare
to baselines (when the number of IE is equal to 0).

6.2 Qualitative Analysis
We randomly sample an image for each dimension of the
latent vector space and creates 10 variants of its generated
latent vector by selecting values from {-2, 2}with 10 intervals
for the dimension, then generate their corresponding output
images. For the generation, we select β-TCVAE (6), which
shows the best FVM scores in dSprites dataset. Thereafter,

we evaluate the semantic roles of each dimension before and
after applying MIPE-transformation function.

In Figure 4, β-TCVAE struggles with y-position and
rotation, as shown on the 6th row, and with scale and
shape represented on the 7th row. On the contrary, MIPET-β-
TCVAE separates y-position and rotation factor (10th, and 7th

rows), also the activated dimensions of MIPET-β-TCVAE are
not overlapped with each factor. Applied our method on β-
TCVAE shows better disentangled representation on dSprites
dataset. These results also show that our proposed method
improves disentangled representation learning. As shown in
the Figure 5, β-VAE struggles with rotation and scale factors
in 4thdimension. Also, it struggles with x-position and scale
factors in 8th dimension, and x-position and rotation factors
in 9th dimension. However, MIPET-β-VAE only struggles
with rotation and shape factors in 5th dimension. As shown
in the Figure 6, CLG-VAE struggles with rotation and shape
factors in 2nd dimension, and shape and scale factors in 7th

dimension. However, MIPET-CLG-VAE separates rotation
and shape factors in 10th, and 1st dimensions respectively.

The qualitative analysis with 3D Shapes dataset, as shown
in the Figure 7, β-VAE struggles with all factors, and only
the object color factor is divided in 6th dimension. However,
this factor is still activated with scale factor in 3rd dimension.
Although MIPET-β-VAE struggles with reconstruction, it is
less struggle with than β-VAE. As shown in the Figure 8,
CLG-VAE struggles with shape and wall color factors in
4th dimension, and shape and object color factors in 7th

dimension. In particular, it struggles with tree factors in 9th

dimension. On the other hand, MIPET-CLG-VAE separates
shape, wall, and object color factors.

The qualitative analysis with 3D Cars dataset, as show
in Figure 9, the left side is the β-TCVAE result, and it
struggles with body, and azimuth factors shown in the 7th

row. However, MIPET-β-TCVAE separates azimuth (6th row)
and body (1st row). In particular, MIPET-β-TCVAE learns
color factor (3rd row) which does not exist on β-TCVAE.
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Fig. 4: Qualitative results on dSprites. The left-side grids are input images and their variants by changing activations of each
dimension of latent vectors. The first row shows input images. The right-side table shows matching pre-defined factors of
the dataset (red: MIPET, blue: no MIPET).

Fig. 5: Qualitative analysis result of β-VAE and MIPET-β-VAE.

Fig. 6: Qualitative analysis result of CLG-VAE (0.2) and MIPET-CLG-VAE (0.2) with dSprites.
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Fig. 7: The Shape is object shape, Orien is an orientation of object, Scale is a scale factor of object, Wall is wall color factor,
Floor is floor color, and Object is object color factors. It represents the β-VAE (β = 2) results.

Fig. 8: Qualitative analysis result of CLG-VAE (0.2) and MIPET-CLG-VAE (0.2) with 3D Shapes.

Fig. 9: Qualitative analysis result of β-VAE (4.0) with 3D Cars.

7 CONCLUSION

In this paper, we address the problem of injecting inductive
bias for learning unsupervised disentangled representations.
To build the bias in VAE frameworks, we propose MIPE-
transformation composed of 1) IPE-transformation for the
benefits of invertibility and partial-equivariant for disentan-
glement, 2) a training loss and module to adapt unrestricted
prior and posterior to an approximated exponential family,
and 3) integration of multiple units of IPE-transformation
function and EF-conversion for more expressive bias. The
method is easily equipped on state-of-the-art VAEs for disen-
tanglement learning and shows significant improvement on
dSprites, 3D Shapes, and 3D Cars datasets. We expect that
our method can be applied to more VAEs, and extended to
downstream applications. Our work is limited to holding

partial equivariance of I2L transformation, so more direct
methods to induce it can be integrated in the future.
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